January 10, 2013, 2 hours

Solve ten problems out of twelve

1. Check the divergence theorem for the vector $\vec{V}=r^{2} \cos \theta \widehat{r}+r^{2} \cos \phi \widehat{\theta}-r^{2} \cos \theta \sin \phi \widehat{\phi}$ using as your volume a hemisphere of radius R. Take the flat side in the $x-y$ plane.
2. Expand the function $f(x)=x^{2}, 0<x<2 \pi$ in a Fourier series if the period is 2π.
3. Find the eigenvalues and normalized eigenvectors of the matrix

$$
A=\left(\begin{array}{cc}
\cos \theta & \sin \theta e^{-i \varphi} \\
\sin \theta e^{i \varphi} & -\cos \theta
\end{array}\right)
$$

4. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be an orthogonal matrix satisfying $A^{T} A=I$ where I is the identity matrix. Find the most general solution for a, b, c, d satisfying the orthogonality condition. Compare with the rotation matrix in two dimensions.
5. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis of a three dimensional vector space V_{3} and T an operator that transforms this basis to the vectors $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ where $e_{1}^{\prime}=T\left(e_{1}\right)=e_{1}+e_{3}, e_{2}^{\prime}=T\left(e_{2}\right)=$ $2 e_{1}+e_{2}, e_{3}^{\prime}=T\left(e_{3}\right)=3 e_{2}+e_{3}$. Find the matrix representation of the operator T and determine whether the vectors $\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right\}$ are independent.
6. Find the Fourier transform of the function $f(x)=\left\{\begin{array}{cc}1-|x|, & -a \leq x \leq a \\ 0, & \text { otherwise }\end{array}\right.$.
7. Verify the delta function expansion

$$
\delta(1+x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{2 n+1}{2} P_{n}(x)
$$

8. Find the analytic function $f(z)=u(x, y)+i v(x, y)$ where $u(x, y)=x^{3}-3 x y^{2}$.
9. Let $\left\{Q_{n}, \quad n=0, \cdots, \infty\right\}$ be an orthogonal set of Sturm-Liouville polynomials with respect to the weight function $w(x)$

$$
\int_{-\infty}^{\infty} w(x) Q_{n}(x) Q_{m}(x) d x=0, \quad n \neq m
$$

where $Q_{n}(x)$ satisfies the differential equation $\frac{1}{w} \frac{d}{d x}\left(w \alpha(x) \frac{d Q_{n}}{d x}\right)+\lambda_{n} Q_{n}=0$. Show that $\left\{Q_{n}^{\prime}=\frac{d Q_{n}}{d x}, \quad n=1, \cdots, \infty\right\}$ satisfy the property

$$
\int_{-\infty}^{\infty} w(x) \alpha(x) Q_{n}^{\prime}(x) Q_{m}^{\prime}(x) d x=0, \quad n \neq m
$$

Hint: Integrate by parts only on one of the $\frac{d Q_{n}}{d x}$ and use the defining equation for Q_{n}.
10. Expand

$$
f(z)=\frac{z^{3}-2 z^{2}+1}{(z-3)^{2}\left(z^{2}+3\right)}
$$

in a Laurent series about $z=3$ and $z= \pm i \sqrt{3}$.
11. Using complex integration over the unit circle show that

$$
\int_{0}^{2 \pi} \frac{d \theta}{a \pm b \cos \theta}=\frac{2 \pi}{\left(a^{2}-b^{2}\right)^{\frac{1}{2}}}, \quad a>|b|
$$

12. Find the residues of the function

$$
f(z)=\frac{e^{z}}{z^{2}\left(z^{2}+9\right)}
$$

about the isolated singular points.

